A Systematic Review of Engineering Plastics and their Viability in Conventional Industrial and Manufacturing Processes

Authors

https://doi.org/10.48314/jmmt.vi.29

Abstract

The use of traditional materials such as metals and ceramics in industrial applications has limitations in terms of weight, cost, and design flexibility. Engineering plastics offer a promising alternative with their lightweight nature, cost-effectiveness, and ability to be molded into complex shapes. However, while their longevity is beneficial for industrial applications, it also implies that once they reach the end of their lifecycle, they can take hundreds of years to decompose. This poses a challenge for industries looking to adopt more sustainable practices and reduce their carbon footprint. Moreover, while some plastics can be recycled, the process is often complex and costly, making it less attractive for industrial applications. This results in a significant amount of plastic waste being disposed of in landfills or incinerated, further exacerbating the environmental impact of plastic production. To address this problem, a systematic literature review was conducted to gather information on the properties, carbon footprint, recyclability, challenges, opportunities and applications of engineering plastics in various industries. The findings revealed that engineering plastics exhibit excellent mechanical properties, including high tensile strength, impact resistance, and fatigue endurance. These properties make them suitable for a wide range of industrial applications, such as automotive components, electronic enclosures, and medical devices. The study further showed that engineering plastics can outperform traditional materials in terms of weight reduction, cost savings, and design flexibility. However, challenges such as limited temperature resistance and poor dimensional stability were identified as potential barriers to their widespread adoption. Additionally, the release of toxic fumes when exposed to high temperatures poses a health risk to workers in industrial settings. This highlighted the importance of implementing proper safety measures and regulations to protect workers from potential hazards associated with the use of engineering industrial plastics.

Keywords:

Engineering plastics, Properties, Characteristics, Environmental sustainability, Applications

References

  1. [1] Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Rafik, M., & Elharfi, A. (2021). Polymer composite materials: A comprehensive review. Composite structures, 262, 113640. https://doi.org/10.1016/j.compstruct.2021.113640

  2. [2] Desai, Y. N., Asare, M. A., De Souza, F. M., & Gupta, R. K. (2023). Specialty polymers: An introduction. In specialty polymers (pp. 1–13). CRC press. https://doi.org/10.1201/9781003278269

  3. [3] Zhu, Y., Romain, C., & Williams, C. K. (2016). Sustainable polymers from renewable resources. Nature, 540(7633), 354–362. https://doi.org/10.1038/nature21001

  4. [4] Mohanty, A. K., Vivekanandhan, S., Pin, J. M., & Misra, M. (2018). Composites from renewable and sustainable resources: challenges and innovations. Science, 362(6414), 536–542. https://doi.org/10.1126/science.aat9072

  5. [5] Ekanem, I. I., Ikpe, A. E., & Ohwoekevwo, J. U. (2024). A systematic review of the trends in ceramic materials and its viability in industrial applications. Journal of material characterization and applications, 2(2), 63–78. https://doi.org/10.5281/zenodo.13729830

  6. [6] Edwards, K. L. (1998). An overview of the technology of fibre-reinforced plastics for design purposes. Materials & design, 19(1-2), 1–10. https://doi.org/10.1016/S0261-3069(98)00007-7

  7. [7] Zhai, W., Bai, L., Zhou, R., Fan, X., Kang, G., Liu, Y., & Zhou, K. (2021). Recent progress on wear-resistant materials: designs, properties, and applications. Advanced science, 8(11), 2003739. https://doi.org/10.1002/advs.202003739

  8. [8] Rajak, D. K., Pagar, D. D., Kumar, R., & Pruncu, C. I. (2019). Recent progress of reinforcement materials: A comprehensive overview of composite materials. Journal of materials research and technology, 8(6), 6354–6374. https://doi.org/10.1016/j.jmrt.2019.09.068

  9. [9] Jiménez, M., Romero, L., Domínguez, I. A., Espinosa, M. D. M., & Domínguez, M. (2019). Additive manufacturing technologies: An overview about 3D printing methods and future prospects. Complexity, 2019(1), 9656938. https://doi.org/10.1155/2019/9656938

  10. [10] Praveena, B. A., Lokesh, N., Buradi, A., Santhosh, N., Praveena, B. L., & Vignesh, R. (2022). A comprehensive review of emerging additive manufacturing (3D printing technology): methods, materials, applications, challenges, trends and future potential. Materials today: proceedings (pp. 1309–1313). Elsevier. https://doi.org/10.1016/j.matpr.2021.11.059

  11. [11] Pierce, D., Haynes, A., Hughes, J., Graves, R., Maziasz, P., Muralidharan, G., Shyam, A., Wang, B., England, R., & Daniel, C. (2019). High temperature materials for heavy duty diesel engines: historical and future trends. Progress in materials science, 103, 109–179. https://doi.org/10.1016/j.pmatsci.2018.10.004

  12. [12] Ghassemieh, E. (2011). Materials in automotive application, state of the art and prospects. In new trends and developments in automotive industry (pp. 365–394). InTech. http://dx.doi.org/10.5772/13286

  13. [13] Narula, C. K., Allison, J. E., Bauer, D. R., & Gandhi, H. S. (1996). Materials chemistry issues related to advanced materials applications in the automotive industry. Chemistry of materials, 8(5), 984–1003. https://doi.org/10.1021/cm950588m

  14. [14] Hao, L., Tang, D., Sun, T., Xiong, W., Feng, Z., Evans, K. E., & Li, Y. (2021). Direct ink writing of mineral materials: A review. International journal of precision engineering and manufacturing-green technology, 8, 665–685. https://doi.org/10.1007/s40684-020-00222-6

  15. [15] Desidery, L., & Lanotte, M. (2022). Polymers and plastics: types, properties, and manufacturing. In plastic waste for sustainable asphalt roads (pp. 3–28). Woodhead publishing. https://doi.org/10.1016/B978-0-323-85789-5.00001-0

  16. [16] Reichert, C. L., Bugnicourt, E., Coltelli, M. B., Cinelli, P., Lazzeri, A., Canesi, I., Braca, F., Martínez, B. M., Alonso, R., Agostinis, L., Verstichel, S., Six, L., Mets, S. D., Gómez, E. C., Ißbrücker, C., Geerinck, R., Nettleton, D. F., Campos, I., Sauter, E., Pieczyk, P., & Schmid, M. (2020). Bio-based packaging: materials, modifications, industrial applications and sustainability. Polymers, 12(7), 1558. https://doi.org/10.3390/polym12071558

  17. [17] Sudarsan, V. (2017). Materials for hostile chemical environments. In materials under extreme conditions (pp. 129–158). Elsevier. https://doi.org/10.1016/B978-0-12-801300-7.00004-8

  18. [18] Liggat, J. J., Pritchard, G., & Pethrick, R. A. (1999). Temperature-its effects on the durability of reinforced plastics. In reinforced plastics durability (pp. 111–150). Woodhead Publishing. https://B2n.ir/j38307

  19. [19] Haque, S. M., Ardila-Rey, J. A., Umar, Y., Mas’ud, A. A., Muhammad-Sukki, F., Jume, B. H., Rahman, H., & Bani, N. A. (2021). Application and suitability of polymeric materials as insulators in electrical equipment. Energies, 14(10), 2758. https://doi.org/10.3390/en14102758

  20. [20] Wang, T. Y., Mao, J., Zhang, B., Zhang, G. X., & Dang, Z. M. (2024). Polymeric insulating materials characteristics for high-voltage applications. Nature reviews electrical engineering, 1(8), 516–528. https://doi.org/10.1038/s44287-024-00070-5

  21. [21] Jogur, G., Nawaz Khan, A., Das, A., Mahajan, P., & Alagirusamy, R. (2018). Impact properties of thermoplastic composites. Textile progress, 50(3), 109–183. https://doi.org/10.1080/00405167.2018.1563369

  22. [22] Adeniyi, A., Agboola, O., Sadiku, E. R., Durowoju, M. O., Olubambi, P. A., Reddy, A. B., Ibrahim, I. D., & Kupolati, W. K. (2016). Thermoplastic-thermoset nanostructured polymer blends. In design and applications of nanostructured polymer blends and nanocomposite systems (pp. 15–38). William andrew publishing. https://doi.org/10.1016/B978-0-323-39408-6.00002-9

  23. [23] Iwuozor, K. O., Emenike, E. C., Ighalo, J. O., & Adeniyi, A. G. (2024). Expanded polyethylene circularity potentials: A comprehensive overview of production process, applications, and recycling techniques. Chemistry Africa, 7, 4127–4138. https://doi.org/10.1007/s42250-024-01037-7

  24. [24] Mansor, M. R., Mustafa, Z., Fadzullah, S. H. S. M., Omar, G., Salim, M. A., & Akop, M. Z. (2018). Recent advances in polyethylene-based biocomposites. In natural fibre reinforced vinyl ester and vinyl polymer composites (pp. 71–96). Woodhead publishing. https://doi.org/10.1016/B978-0-08-102160-6.00003-2

  25. [25] Hossain, M. T., Shahid, M. A., Mahmud, N., Habib, A., Rana, M. M., Khan, S. A., & Hossain, M. D. (2024). Research and application of polypropylene: A review. Discover nano, 19(1), 2. https://doi.org/10.1186/s11671-023-03952-z

  26. [26] Antosik, A. K., Kowalska, U., Stobińska, M., Dzięcioł, P., Pieczykolan, M., Kozłowska, K., & Bartkowiak, A. (2021). Development and characterization of bioactive polypropylene films for food packaging applications. Polymers, 13(20), 3478. https://doi.org/10.3390/polym13203478

  27. [27] KJ, A., & M, M. (2024). Application of PVC-A superior material in the fields of science and technology. Polymer-plastics technology and materials, 63(15), 1–19. https://doi.org/10.1080/25740881.2024.2365288

  28. [28] Hussein, A. K., Yousif, E., Rasheed, M. K., Edo, G. I., Bufaroosha, M., & Umar, H. (2024). Synthesis, modification, and applications of poly (vinyl chloride)(PVC). Polymer-plastics technology and materials, 1–40. https://doi.org/10.1080/25740881.2024.2421436

  29. [29] Fasake, V., Shelake, P. S., Srivastava, A., & Dashora, K. (2021). Characteristics of different plastic materials, properties and their role in food packaging. Current nutrition & food science, 17(9), 944–954. https://doi.org/10.2174/1573401317666210505100139

  30. [30] Turner, A. (2020). Foamed polystyrene in the marine environment: sources, additives, transport, behavior, and impacts. Environmental science & technology, 54(17), 10411–10420. https://doi.org/10.1021/acs.est.0c03221

  31. [31] Nisticò, R. (2020). Polyethylene terephthalate (PET) in the packaging industry. Polymer testing, 90, 106707. https://doi.org/10.1016/j.polymertesting.2020.106707

  32. [32] Benyathiar, P., Kumar, P., Carpenter, G., Brace, J., & Mishra, D. K. (2022). Polyethylene terephthalate (PET) bottle-to-bottle recycling for the beverage industry: A review. Polymers, 14(12), 2366. https://doi.org/10.3390/polym14122366

  33. [33] Joseph, T. M., Azat, S., Ahmadi, Z., Jazani, O. M., Esmaeili, A., Kianfar, E., Haponiuk, J., & Thomas, S. (2024). Polyethylene terephthalate (PET) recycling: A review. Case studies in chemical and environmental engineering, 9, 100673. https://doi.org/10.1016/j.cscee.2024.100673

  34. [34] Desai, K., Maiti, S., & Rani S, L. (2020). Will poly ether ether ketone outshine the existing dental materials? An overview. Indian journal of forensic medicine & toxicology, 14(4). https://doi.org/10.37506/ijfmt.v14i4.12447

  35. [35] Arora, P. K., Ahmad, F., Khan, K., Jha, A. K., & Tehami, N. (2023). Reviewing the materials, techniques, and characteristics of peek in the context of additive manufacturing (3D printing). International conference on mechanical and energy technologies (pp. 399–409). Springer, singapore. https://doi.org/10.1007/978-981-97-4947-8_33

  36. [36] Melentiev, R., Yudhanto, A., Tao, R., Vuchkov, T., & Lubineau, G. (2022). Metallization of polymers and composites: state-of-the-art approaches. Materials & design, 221, 110958. https://doi.org/10.1016/j.matdes.2022.110958

  37. [37] Johann, K. S., Wolf, A., & Bonten, C. (2023). Mechanical properties of 3D-printed liquid crystalline polymers with low and high melting temperatures. Materials, 17(1), 152. https://doi.org/10.3390/ma17010152

  38. [38] Maitra, A., Das, T., & Das, C. K. (2015). Liquid crystalline polymer and its composites: chemistry and recent advances. In liquid crystalline polymers (pp. 103–131). Springer, cham. https://doi.org/10.1007/978-3-319-20270-9_5

  39. [39] Post, W., Susa, A., Blaauw, R., Molenveld, K., & Knoop, R. J. I. (2020). A review on the potential and limitations of recyclable thermosets for structural applications. Polymer reviews, 60(2), 359–388. https://doi.org/10.1080/15583724.2019.1673406

  40. [40] Pascault, J. P., & Williams, R. J. J. (2018). Overview of thermosets: present and future. In thermosets (pp. 3–34). Elsevier. https://doi.org/10.1016/B978-0-08-101021-1.00001-0

  41. [41] Xie, F., Huang, L., Leng, J., & Liu, Y. (2016). Thermoset shape memory polymers and their composites. Journal of intelligent material systems and structures, 27(18), 2433–2455. https://doi.org/10.1177/1045389X16634211

  42. [42] Xiang, Q., & Xiao, F. (2020). Applications of epoxy materials in pavement engineering. Construction and building materials, 235, 117529. https://doi.org/10.1016/j.conbuildmat.2019.117529

  43. [43] Higgins, C., Cahill, J., Jolanki, R., & Nixon, R. (2020). Epoxy resins. In kanerva’s occupational dermatology, (pp. 757–788). https://doi.org/10.1007/978-3-319-68617-2_51

  44. [44] Joseph, J. K., Naiker, V., Sreeram, P., Mampulliyalil, F., Varghese, P. J. G., Dhawale, P. V, Sasidharan, S. P., Thakur, V. K., & Raghavan, P. (2024). Phenolic resin: preparation, structure, properties, and applications. In handbook of thermosetting foams, aerogels, and hydrogels (pp. 383–420). Elsevier. https://doi.org/10.1016/B978-0-323-99452-1.00003-6

  45. [45] Zhu, B., Jiang, X., Li, S., & Zhu, M. (2024). An overview of recycling phenolic resin. Polymers, 16(9), 1255. https://doi.org/10.3390/polym16091255

  46. [46] Das, A., & Mahanwar, P. (2020). A brief discussion on advances in polyurethane applications. Advanced industrial and engineering polymer research, 3(3), 93–101. https://doi.org/10.1016/j.aiepr.2020.07.002

  47. [47] Somarathna, H., Raman, S. N., Mohotti, D., Mutalib, A. A., & Badri, K. H. (2018). The use of polyurethane for structural and infrastructural engineering applications: A state-of-the-art review. Construction and building materials, 190, 995–1014. https://doi.org/10.1016/j.conbuildmat.2018.09.166

  48. [48] Wong-Ng, W., Principe, I. A., Lynch, R. A., Zhang, J., & Klüppel, A. (2020). Advances in melamine. Scientific research publishing. https://www.scirp.org/book/detailedinforofabook?bookid=2692&pagespeed=noscript

  49. [49] Motlatle, A. M., Ray, S. S., Ojijo, V., & Scriba, M. R. (2022). Polyester-based coatings for corrosion protection. Polymers, 14(16), 3413. https://doi.org/10.3390/polym14163413

  50. [50] Tayde, S., Satdive, A., Toksha, B., & Chatterjee, A. (2023). Polyester resins and their use as matrix material in polymer composites: An overview. In polyester-based biocomposites (pp. 1–23). Taylorfrancis. http://dx.doi.org/10.1201/9781003270980-1

  51. [51] Olivera, S., Muralidhara, H. B., Venkatesh, K., Gopalakrishna, K., & Vivek, C. S. (2016). Plating on acrylonitrile-butadiene-styrene (ABS) plastic: A review. Journal of materials science, 51, 3657–3674. https://doi.org/10.1007/s10853-015-9668-7

  52. [52] Singh, P., Katiyar, P., & Singh, H. (2023). Impact of compatibilization on polypropylene (PP) and acrylonitrile butadiene styrene (ABS) blend: A review. Materials today: proceedings, 78, 189–197. https://doi.org/10.1016/j.matpr.2023.01.350

  53. [53] Deshmukh, D., Kulkarni, H., Srivats, D. S., Bhanushali, S., & More, A. P. (2024). Recycling of acrylonitrile butadiene styrene (ABS): A review. Polymer bulletin, 81, 1–38. https://doi.org/10.1007/s00289-024-05269-y

  54. [54] Chandrinos, A. (2021). A review of polymers and plastic high index optical materials. Journal of materials science research and reviews, 4(2), 98-185. https://journaljmsrr.com/index.php/JMSRR/article/view/124

  55. [55] Mărieş, G. R. E., & Abrudan, A. M. (2018). Thermoplastic polymers in product design. IOP conference series: materials science and engineering (pp. 12118). IOP publishing. https://doi.org/10.1088/1757-899X/393/1/012118

  56. [56] Rayjadhav, S. B., & Kubade, P. R. (2024). Polyamide: comprehensive insights into types, chemical foundations, blending techniques and versatile applications. International conference on advanced materials manufacturing and structures (pp. 407–425). Springer, cham. https://doi.org/10.1007/978-3-031-72527-2_30

  57. [57] Francisco, D. L., Paiva, L. B., & Aldeia, W. (2019). Advances in polyamide nanocomposites: A review. Polymer composites, 40(3), 851–870. https://doi.org/10.1002/pc.24837

  58. [58] Zhong, X., Zhao, X., Qian, Y., & Zou, Y. (2018). Polyethylene plastic production process. Insight-material science, 1(1), 1. http://dx.doi.org/10.18282/ims.v1i1.104

  59. [59] Rätzsch, M., Arnold, M., Borsig, E., Bucka, H., & Reichelt, N. (2002). Radical reactions on polypropylene in the solid state. Progress in polymer science, 27(7), 1195–1282. https://doi.org/10.1016/S0079-6700(02)00006-0

  60. [60] Androsch, R., Di Lorenzo, M. L., Schick, C., & Wunderlich, B. (2010). Mesophases in polyethylene, polypropylene, and poly (1-butene). Polymer, 51(21), 4639–4662. https://doi.org/10.1016/j.polymer.2010.07.033

  61. [61] Gilbert, M., & Patrick, S. (2017). Poly(vinyl chloride). In brydson’s plastics materials (pp. 329–388). Elsevier. https://doi.org/10.1016/B978-0-323-35824-8.00013-X

  62. [62] Khan, S. M., Gull, N., Khan, R. U., & Butt, M. T. Z. (2022). Polyvinylchloride (PVC): structure and properties relationship. In polyvinylchloride-based blends: preparation, characterization and applications (pp. 19–47). Springer, cham. https://doi.org/10.1007/978-3-030-78455-3_2

  63. [63] Dong, D., Guo, Z., Yang, X., & Dai, Y. (2024). Comprehensive understanding of the aging and biodegradation of polystyrene-based plastics. Environmental pollution, 342, 123034. https://doi.org/10.1016/j.envpol.2023.123034

  64. [64] Candlin, J. P. (2008). Polymeric materials: composition, uses and applications. In comprehensive analytical chemistry (pp. 65–119). Elsevier. https://doi.org/10.1016/S0166-526X(08)00403-0

  65. [65] Dhaka, V., Singh, S., Anil, A. G., Sunil Kumar Naik, T. S., Garg, S., Samuel, J., Kumar, M., Ramamurthy, P. C., & Singh, J. (2022). Occurrence, toxicity and remediation of polyethylene terephthalate plastics. A review. Environmental chemistry letters, 20, 1777–1800. https://doi.org/10.1007/s10311-021-01384-8

  66. [66] Soong, Y. H. V., Sobkowicz, M. J., & Xie, D. (2022). Recent advances in biological recycling of polyethylene terephthalate (PET) plastic wastes. Bioengineering, 9(3), 98. https://doi.org/10.3390/bioengineering9030098

  67. [67] Mbogori, M., Vaish, A., Vaishya, R., Haleem, A., & Javaid, M. (2022). Poly-ether-ether-ketone (PEEK) in orthopaedic practice-A current concept review. Journal of orthopaedic reports, 1(1), 3–7. https://doi.org/10.1016/j.jorep.2022.03.013

  68. [68] Ma, H., Suonan, A., Zhou, J., Yuan, Q., Liu, L., Zhao, X., Lou, X., Yang, CH., Li, D., & Zhang, Y. (2021). PEEK (polyether-ether-ketone) and its composite materials in orthopedic implantation. Arabian journal of chemistry, 14(3), 102977. https://doi.org/10.1016/j.arabjc.2020.102977

  69. [69] Singh, S. (2024). Liquid crystalline polymers. In handbook of liquid crystals—volume I: foundations and fundamental aspects (pp. 365–419). Springer, cham. https://doi.org/10.1007/978-3-031-50058-9_8

  70. [70] Guardià, J., Reina, J. A., Giamberini, M., & Montané, X. (2024). An up-to-date overview of liquid crystals and liquid crystal polymers for different applications: A review. Polymers, 16(16), 2293. https://doi.org/10.3390/polym16162293

  71. [71] Nazarychev, V. M., & Lyulin, S. V. (2023). The effect of mechanical elongation on the thermal conductivity of amorphous and semicrystalline thermoplastic polyimides: atomistic simulations. Polymers, 15(13), 2926. https://doi.org/10.3390/polym15132926

  72. [72] Frihart, C. R. (2023). Epoxy adhesives from natural materials. In biobased adhesives: sources, characteristics and applications (pp. 367–393). Wiley online library. https://doi.org/10.1002/9781394175406.ch12

  73. [73] Yang, W., Ding, H., Puglia, D., Kenny, J. M., Liu, T., Guo, J., Wang, Q., Ou., R., Xu, P., Ma., P., & Lemstra, P. J. (2022). Bio-renewable polymers based on lignin-derived phenol monomers: synthesis, applications, and perspectives. SusMat, 2(5), 535–568. https://doi.org/10.1002/sus2.87

  74. [74] Akram, N., Zia, K. M., Mumtaz, N., Saeed, M., Usman, M., & Rehman, S. (2020). Polyurethane coatings. In polymer coatings: technology and applications (pp. 135–157). Wiley online library. https://doi.org/10.1002/9781119655145.ch7

  75. [75] Deng, S., Pizzi, A., Du, G., Lagel, M. C., Delmotte, L., & Abdalla, S. (2018). Synthesis, structure characterization and application of melamine--glyoxal adhesive resins. European journal of wood and wood products, 76, 283–296. https://doi.org/10.1007/s00107-017-1184-9

  76. [76] Edlund, U., & Albertsson, A. C. (2003). Polyesters based on diacid monomers. Advanced drug delivery reviews, 55(4), 585–609. https://doi.org/10.1016/S0169-409X(03)00036-X

  77. [77] Karuppiah, A. V. (2016). Predicting the influence of weave architecture on the stress relaxation behavior of woven composite using finite element based micromechanics. [Thesis]. http://dx.doi.org/10.13140/RG.2.2.17881.16482

  78. [78] Firouzi, E., Hajifatheali, H., Ahmadi, E., & Marefat, M. (2020). An overview of acrylonitrile production methods: comparison of carbon fiber precursors and marketing. Mini-reviews in organic chemistry, 17(5), 570–588. https://doi.org/10.2174/1570193X16666190703130542

  79. [79] Henrici-Olivé, G., & Olivé, S. (2005). Molecular interactions and macroscopic properties of polyacrylonitrile and model substances. Chemistry (pp. 123–152). Springer, berlin, heidelberg. https://doi.org/10.1007/3-540-09442-3_6

  80. [80] Begum, S. A., Rane, A. V., & Kanny, K. (2020). Applications of compatibilized polymer blends in automobile industry. In compatibilization of polymer blends (pp. 563–593). Elsevier. https://doi.org/10.1016/B978-0-12-816006-0.00020-7

  81. [81] Martin, P. (2022). Engineering plastics—an introduction. In characterization and failure analysis of plastics (pp. 3–30). ASM international. https://doi.org/10.31399/asm.hb.v11B.a0006925

  82. [82] Xia, T., Ye, Y., & Qin, W. L. (2019). Acrylonitrile-butadiene-styrene colored with a nanoclay-based filler: mechanical, thermal and colorimetric properties. Polymer bulletin, 76, 3769–3784. https://doi.org/10.1007/s00289-018-2580-y

  83. [83] Achilias, D. S., Andriotis, L., Koutsidis, I. A., Louka, D. A., Nianias, N. P., Siafaka, P., Tsagkalias, I., & Tsintzou, G. (2012). Recent advances in the chemical recycling of polymers (PP, PS, LDPE, HDPE, PVC, PC, Nylon, PMMA). In material recycling - trends and perspectives (pp. 64). Intechopen. https://doi.org/10.5772/33457

  84. [84] George, A., Sanjay, M. R., Srisuk, R., Parameswaranpillai, J., & Siengchin, S. (2020). A comprehensive review on chemical properties and applications of biopolymers and their composites. International journal of biological macromolecules, 154, 329–338. https://doi.org/10.1016/j.ijbiomac.2020.03.120

  85. [85] Zaki, M. F., Rashad, A. M., Elkalashy, S. I., & Al-Naggar, T. I. (2024). Assessment the exposure effects of polycarbonate with X-ray radiation using spectroscopic techniques and molecular modeling calculations. Optical and quantum electronics, 56(3), 318. https://doi.org/10.1007/s11082-023-05865-8

  86. [86] Agrawal, A. K., & Jassal, M. (2008). Manufacture of polyamide fibres. In polyesters and polyamides (pp. 97–139). Woodhead publishing. https://doi.org/10.1533/9781845694609.1.97

  87. [87] Mishra, N., Madhad, H., & Vasava, D. (2021). Progress in the chemistry of functional aramids properties. Journal of heterocyclic chemistry, 58(10), 1887–1913. https://doi.org/10.1002/jhet.4336

  88. [88] Corzo, H. H., Hillers-Bendtsen, A. E., Barnes, A., Zamani, A. Y., Pawłowski, F., Olsen, J., Jørgensen, P., Mikkelsen, K. V., & Bykov, D. (2023). Coupled cluster theory on modern heterogeneous supercomputers. Frontiers in chemistry, 11, 1154526. https://doi.org/10.3389/fchem.2023.1154526

  89. [89] Ram, A. (1997). Description of major plastics: structure, properties and utilization. In fundamentals of polymer engineering (pp. 148–215). Springer, boston, MA. https://doi.org/10.1007/978-1-4899-1822-2_6

  90. [90] Kumar, A., & Kumar, N. (2022). Advances in transparent polymer nanocomposites and their applications: A comprehensive review. Polymer-plastics technology and materials, 61(9), 937–974. https://doi.org/10.1080/25740881.2022.2029892

  91. [91] Peponi, L., Puglia, D., Torre, L., Valentini, L., & Kenny, J. M. (2014). Processing of nanostructured polymers and advanced polymeric based nanocomposites. Materials science and engineering: R: reports, 85, 1–46. https://doi.org/10.1016/j.mser.2014.08.002

  92. [92] Cheng, S., Li, X., Zheng, Y., Smith, D. M., & Li, C. Y. (2020). Anisotropic ion transport in 2D polymer single crystal-based solid polymer electrolytes. Giant, 2, 100021. https://doi.org/10.1016/j.giant.2020.100021

  93. [93] Galeski, A. (2003). Strength and toughness of crystalline polymer systems. Progress in polymer science, 28(12), 1643–1699. https://doi.org/10.1016/j.progpolymsci.2003.09.003

  94. [94] Tashiro, K. (1993). Molecular theory of mechanical properties of crystalline polymers. Progress in polymer science, 18(3), 377–435. https://doi.org/10.1016/0079-6700(93)90013-3

  95. [95] Uetani, K., & Hatori, K. (2017). Thermal conductivity analysis and applications of nanocellulose materials. Science and technology of advanced materials, 18(1), 877–892. https://doi.org/10.1080/14686996.2017.1390692

  96. [96] Rahimi, A., & García, J. M. (2017). Chemical recycling of waste plastics for new materials production. Nature reviews chemistry, 1(6), 46. https://doi.org/10.1038/s41570-017-0046

  97. [97] Mülhaupt, R. (2013). Green polymer chemistry and bio-based plastics: dreams and reality. Macromolecular chemistry and physics, 214(2), 159–174. https://doi.org/10.1002/macp.201200439

  98. [98] Nagarajan, V., Mohanty, A. K., & Misra, M. (2016). Perspective on polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS sustainable chemistry & engineering, 4(6), 2899–2916. https://doi.org/10.1021/acssuschemeng.6b00321

  99. [99] Shenoy, S. R., Wagdarikar, M. J., & Desai, N. D. (2024). Polymers in medical devices and pharmaceutical packaging. In polymers for pharmaceutical and biomedical applications (pp. 333–382). Elsevier. https://doi.org/10.1016/B978-0-323-95496-9.00009-0

  100. [100] Jia, C., Das, P., Kim, I., Yoon, Y. J., Tay, C. Y., & Lee, J. M. (2022). Applications, treatments, and reuse of plastics from electrical and electronic equipment. Journal of industrial and engineering chemistry, 110, 84–99. https://doi.org/10.1016/j.jiec.2022.03.026

  101. [101] Herrmann, C., Dewulf, W., Hauschild, M., Kaluza, A., Kara, S., & Skerlos, S. (2018). Life cycle engineering of lightweight structures. Cirp annals, 67(2), 651–672. https://doi.org/10.1016/j.cirp.2018.05.008

  102. [102] Vijayan, D. S., Sivasuriyan, A., Devarajan, P., Stefańska, A., Wodzyński, Ł., & Koda, E. (2023). Carbon fibre-reinforced polymer (CFRP) composites in civil engineering application—a comprehensive review. Buildings, 13(6), 1509. https://doi.org/10.3390/buildings13061509

  103. [103] Ncube, L. K., Ude, A. U., Ogunmuyiwa, E. N., Zulkifli, R., & Beas, I. N. (2020). Environmental impact of food packaging materials: A review of contemporary development from conventional plastics to polylactic acid based materials. Materials, 13(21), 4994. https://doi.org/10.3390/ma13214994

  104. [104] Ferreira-Filipe, D. A., Paço, A., Duarte, A. C., Rocha-Santos, T., & Patrício Silva, A. L. (2021). Are biobased plastics green alternatives? a critical review. International journal of environmental research and public health, 18(15), 7729. https://doi.org/10.3390/ijerph18157729

  105. [105] Samuel, H. S., Ekpan, F. D. M., & Ori, M. O. (2024). Biodegradable, recyclable, and renewable polymers as alternatives to traditional petroleum-based plastics. Asian journal of environmental research, 1(3), 152–165. https://doi.org/10.69930/ajer.v1i3.86

  106. [106] Fan, J., & Njuguna, J. (2016). An introduction to lightweight composite materials and their use in transport structures. In lightweight composite structures in transport (pp. 3–34). Woodhead publishing. https://doi.org/10.1016/B978-1-78242-325-6.00001-3

  107. [107] Abedsoltan, H. (2024). Applications of plastics in the automotive industry: current trends and future perspectives. Polymer engineering & science, 64(3), 929–950. https://doi.org/10.1002/pen.26604

  108. [108] Sidhu, T. S., Agrawal, R. D., & Prakash, S. (2005). Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings—a review. Surface and coatings technology, 198(1–3), 441–446. https://doi.org/10.1016/j.surfcoat.2004.10.056

  109. [109] Meetham, G. W. (1991). High-temperature materials—a general review. Journal of materials science, 26(4), 853–860. https://doi.org/10.1007/BF00576759

  110. [110] Jamshaid, H., & Mishra, R. (2016). A green material from rock: basalt fiber-a review. The journal of the textile institute, 107(7), 923–937. https://doi.org/10.1080/00405000.2015.1071940

  111. [111] Dhawan, S. K., Bhandari, H., Ruhi, G., Bisht, B. M. S., & Sambyal, P. (2020). Corrosion preventive materials and corrosion testing. Taylor & francis. https://doi.org/10.1201/9781315101217

  112. [112] Samyn, P., De Baets, P., Schoukens, G., & Van Peteghem, A. P. (2006). Large-scale tests on friction and wear of engineering polymers for material selection in highly loaded sliding systems. Materials & design, 27(7), 535–555. https://doi.org/10.1016/j.matdes.2004.12.021

  113. [113] Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C. B., Wang, Ch. C. L., Shin, Y. C., Zhang, S., & Zavattieri, P. D. (2015). The status, challenges, and future of additive manufacturing in engineering. Computer-aided design, 69, 65–89. https://doi.org/10.1016/j.cad.2015.04.001

  114. [114] Alim, M. A., Abdullah, M. Z., Aziz, M. S. A., Kamarudin, R., & Gunnasegaran, P. (2021). Recent advances on thermally conductive adhesive in electronic packaging: A review. Polymers, 13(19), 3337. https://doi.org/10.3390/polym13193337

  115. [115] Nazir, M. T., Khalid, A., Akram, S., Mishra, P., Kabir, I. I., Yeoh, G. H., Phung, B. T., & Wong, K. L. (2023). Electrical tracking, erosion and flammability resistance of high voltage outdoor composite insulation: Research, innovation and future outlook. Materials science and engineering: R: reports, 156, 100757. https://doi.org/10.1016/j.mser.2023.100757

  116. [116] Karim, M. A., Abdullah, M. Z., Deifalla, A. F., Azab, M., & Waqar, A. (2023). An assessment of the processing parameters and application of fibre-reinforced polymers (FRPs) in the petroleum and natural gas industries: A review. Results in engineering, 18, 101091. https://doi.org/10.1016/j.rineng.2023.101091

  117. [117] Scheiner, M., Dickens, T. J., & Okoli, O. (2016). Progress towards self-healing polymers for composite structural applications. Polymer, 83, 260–282. https://doi.org/10.1016/j.polymer.2015.11.008

  118. [118] Hopewell, J., Dvorak, R., & Kosior, E. (2009). Plastics recycling: challenges and opportunities. Philosophical transactions of the royal society b: biological sciences, 364(1526), 2115–2126. https://doi.org/10.1098/rstb.2008.0311

Published

2025-04-06

How to Cite

Ikpe, A. E. ., Itiat, N. E. ., & Ekanem, I. I. . (2025). A Systematic Review of Engineering Plastics and their Viability in Conventional Industrial and Manufacturing Processes. Journal of Materials and Manufacturing Technology, 2(1), 12-32. https://doi.org/10.48314/jmmt.vi.29

Similar Articles

You may also start an advanced similarity search for this article.