Evolution of Remote Corrosion Monitoring Systems: Retrospective Analysis, Current Technologies, and Future Paradigms in Corrosion Detection and Mitigation

Authors

https://doi.org/10.48314/jmmt.vi.32

Abstract

Remote corrosion monitoring has evolved into a critical field, enabling the early detection and mitigation of material degradation across industries such as oil and gas, transportation, and infrastructure. This paper explores the historical development, current state, and future trends of remote corrosion monitoring systems, focusing on advancements in electrochemical sensing, Non-Destructive Evaluation (NDE), and data analytics. Historically, corrosion management relied on periodic manual inspections and destructive testing, limiting its ability to predict failures effectively. The advent of remote monitoring systems marked a paradigm shift by leveraging sensors to capture in situ data on corrosion rate, pitting activity, and environmental factors like humidity, temperature, and chloride concentration. Modern systems integrate advanced techniques such as Electrical Resistance (ER), the use of autonomous robots, and radiographic inspection, amongst other methods, to enhance the reliability of corrosion detection. Current innovations emphasize real-time monitoring, wireless communication, and IoT-enabled networks. These advancements facilitate seamless integration with predictive maintenance strategies and digital twins, allowing for better asset management and risk assessment. Big data analytics and machine learning algorithms are increasingly utilized to analyze complex corrosion datasets, enabling accurate predictions and adaptive control mechanisms. Looking ahead, future developments are poised to revolutionize corrosion monitoring further. Emerging technologies such as nanotechnology-based sensors, fibre optic sensing, and autonomous robotics are expected to enhance sensitivity and expand coverage in challenging environments like subsea pipelines and nuclear facilities. Additionally, advancements in Artificial Intelligence (AI), edge computing, and blockchain for data security will shape the next generation of monitoring systems. This paper provides a comprehensive review of the progression of remote corrosion monitoring systems, highlighting key technologies, challenges, and opportunities. By examining the intersection of material science, engineering, and digital technologies, it outlines a roadmap for advancing corrosion management practices to ensure safety, sustainability, and economic efficiency.

Keywords:

Corrosion monitoring, Electrochemical sensing, Real-time monitoring, IoT and radiographic inspection, Non-destructive evaluation

References

  1. [1] El Masri, I., Lescop, B., Talbot, P., Vien, G. N., Becker, J., Thierry, D., & Rioual, S. (2020). Development of a RFID sensitive tag dedicated to the monitoring of the environmental corrosiveness for indoor applications. Sensors and actuators b: chemical, 322, 128602. https://doi.org/10.1016/j.snb.2020.128602

  2. [2] Diler, E., Larché, N., Thierry, D., & Dégrès, Y. (2014). Biofilm sensor for deep sea. 2014 IEEE sensor systems for a changing ocean (SSCO). IEEE. (pp. 1–5). https://doi.org/10.1109/SSCO.2014.7000368

  3. [3] Boéro, J., Schoefs, F., Yañez-Godoy, H., & Capra, B. (2012). Time-function reliability of harbour infrastructures from stochastic modelling of corrosion. European journal of environmental and civil engineering, 16(10), 1187–1201. https://doi.org/10.1080/19648189.2012.688611

  4. [4] Khalifeh, R., Lescop, B., Gallée, F., & Rioual, S. (2016). Development of a radio frequency resonator for monitoring water diffusion in organic coatings. Sensors and actuators a: physical, 247, 30–36. https://doi.org/10.1016/j.sna.2016.05.024

  5. [5] O’Byrne, M., Ghosh, B., Schoefs, F., & Pakrashi, V. (2014). Regionally enhanced multiphase segmentation technique for damaged surfaces. Computer‐Aided civil and infrastructure engineering, 29(9), 644–658. https://doi.org/10.1111/mice.12098

  6. [6] Mathiesen, T., Black, A., & Grønvold, F. (2016). Monitoring and inspection options for evaluating corrosion in offshore wind foundations. Corrosion 2016, 1–11. https://doi.org/10.5006/C2016-07702

  7. [7] Kumar, M., Kant, S., & Kumar, S. (2019). Corrosion behavior of wire arc sprayed Ni-based coatings in extreme environment. Materials research express, 6(10), 106427. https://doi.org/10.1088/2053-1591/ab3bd8

  8. [8] Giurlani, W., Zangari, G., Gambinossi, F., Passaponti, M., Salvietti, E., Di Benedetto, F., … & Innocenti, M. (2018). Electroplating for decorative applications: Recent trends in research and development. Coatings, 8(8), 260. https://doi.org/10.3390/coatings8080260

  9. [9] Sánchez-Amaya, J., Amaya Vázquez, M. R., & Botana, J. (2013). Laser welding of light metal alloys: Aluminium and titanium alloys. In Handbook of laser welding technologies (pp. 215–254). https://doi.org/10.1533/9780857098771.2.215

  10. [10] Jones, F. R., & Foreman, J. P. (2015). The response of aerospace composites to temperature and humidity. (pp. 335–369). Woodhead Publishing. https://doi.org/10.1016/B978-0-85709-523-7.00012-8

  11. [11] Kadhim, M. G., & Ali, D. M. T. (2017). A critical review on corrosion and its prevention in the oilfield equipment. Journal of petroleum research and studies, 7(2), 162–189. https://doi.org/10.52716/jprs.v7i2.195

  12. [12] Kolotyrkin, J. M. (1963). Pitting corrosion of metals*. Corrosion, 19(8), 261t-268t. https://doi.org/10.5006/0010-9312-19.8.261

  13. [13] Gonçalves, M. C., & Margarido, F. (2015). Materials for construction and civil engineering. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-08236-3

  14. [14] Prutton, C. F., Frey, D. R., Turnbull, D., & Dlouhy, G. (1945). Corrosion of metals by organic acids in hydrocarbon solvents. Industrial & engineering chemistry, 37(1), 90–100. https://doi.org/10.1021/ie50421a020

  15. [15] Feliu, S. (2020). Electrochemical impedance spectroscopy for the measurement of the corrosion rate of magnesium alloys: Brief review and challenges. Metals, 10(6), 1-23. https://doi.org/10.3390/met10060775

  16. [16] Akpanyung, K. V, & Loto, R. T. (2019). Pitting corrosion evaluation: A review. Journal of physics: Conference series (Vol. 1378, p. 22088). IOP Publishing. https://doi.org/10.1088/1742-6596/1378/2/022088

  17. [17] Low-Décarie, E., Boatman, T. G., Bennett, N., Passfield, W., Gavalás-Olea, A., Siegel, P., & Geider, R. J. (2017). Predictions of response to temperature are contingent on model choice and data quality. Ecology and evolution, 7(23), 10467–10481. https://doi.org/10.1002/ece3.3576

  18. [18] Eliaz, N. (2019). Corrosion of metallic biomaterials: A review. Materials, 12(3), 407. https://doi.org/10.3390/ma12030407

  19. [19] Shibli, S. M. A., Meena, B. N., & Remya, R. (2015). A review on recent approaches in the field of hot dip zinc galvanizing process. Surface and coatings technology, 262, 210–215. https://doi.org/10.1016/j.surfcoat.2014.12.054

  20. [20] Laranjo, R. D., & Anacleto, N. M. (2018). Direct smelting process for stainless steel crude alloy recovery from mixed low-grade chromite, nickel laterite and manganese ores. Journal of iron and steel research international, 25(5), 515–523. https://doi.org/10.1007/s42243-018-0068-5

  21. [21] Laranjo, R. D., & Anacleto, N. M. (2017). Production of Fe-Cr-Ni-Mn alloy by direct smelting of mixed low-grade chromite, nickel laterite and manganese ores with low-grade coal as reductant. International journal of metallurgical & materials science and engineering (IJMMSE), 7(1), 1–12. https://d1wqtxts1xzle7.cloudfront.net/86186448

  22. [22] Yape, E. O., & Anacleto, N. M. (2014). Direct smelting of chromite and laterite ores with carbon under argon atmosphere. Advanced materials research, 849, 170–176. https://doi.org/10.4028/www.scientific.net/AMR.849.170

  23. [23] Pal, M. K., & Lavanya, M. (2022). Microbial influenced corrosion: understanding bioadhesion and biofilm formation. Journal of bio-and tribo-corrosion, 8(3), 76. https://doi.org/10.1007/s40735-022-00677-x

  24. [24] Hanoon, M., Zinad, D. S., Resen, A. M., & Al-Amiery, A. A. (2020). Gravimetrical and surface morphology studies of corrosion inhibition effects of a 4-aminoantipyrine derivative on mild steel in a corrosive solution. International journal of corrosion and scale inhibition, 9(3), 953–966. https://dx.doi.org/10.17675/2305-6894-2020-9-3-10

  25. [25] Kharanzhevskiy, E. V., Reshetnikov, S. M., Efimov, A. V., Gil’mutdinov, F. Z., & Krivilev, M. D. (2020). Application of some inhibitors for improving the corrosion resistance of ceramic coatings deposited on non-alloy steel by short-pulse laser treatment. International journal of corrosion and scale inhibition, 9(1), 44. https://pdfs.semanticscholar.org/1e35/33ec39f13ab53726281205aecb9df16630d5.pdf

  26. [26] Judran, A., Kadhim, S., & Elah, H. A. (2018). Enhancement of the corrosion resistance for 6009 aluminum alloy by laser treatment. Kufa journal of engineering, 9(2), 201–2014. http://dx.doi.org/10.30572/2018/kje/090215

  27. [27] Sahoo, P., Das, S., & Davim, J. P. (2016). Surface finish coatings. In Reference module in materials science and materials engineering. https://doi.org/10.1016/B978-0-12-803581-8.09167-0

  28. [28] Wilson, H., & Erbe, A. (2019). Convection induced by illumination-based metal surface heating increases corrosion potential, corrosion rates. Electrochemistry communications, 106, 106513. https://doi.org/10.1016/j.elecom.2019.106513

  29. [29] Radivojević, M., Rehren, T., Farid, S., Pernicka, E., & Camurcuoğlu, D. (2017). Repealing the Çatalhöyük extractive metallurgy: The green, the fire and the ‘slag.’ Journal of archaeological science, 86, 101–122. https://doi.org/10.1016/j.jas.2017.07.001

  30. [30] Barouni, K., Kassale, A., Albourine, A., Jbara, O., Hammouti, B., & Bazzi, L. (2014). Amino acids as corrosion inhibitors for copper in nitric acid medium: Experimental and theoretical study. Journal of materials and environmental science, 5(2), 456–463. https://www.researchgate.net/profile/Frank-T-Edelmann/post/What_is_responsible_for_a_higher_inhibiting_property_of_4-aminosalicylic_acid_on_copper_surface_in_nitric_acid_medium/attachment/61d9a600f5675b211b1ca49b/AS%3A1109990475595776%401641653760407/download/54-JMES-536-2014-Barouni.pdf

  31. [31] Figueira, R. B., Silva, C. J. R., & Pereira, E. V. (2015). Organic–inorganic hybrid sol–gel coatings for metal corrosion protection: A review of recent progress. Journal of coatings technology and research, 12(1), 1–35. https://doi.org/10.1007/s11998-014-9595-6

  32. [32] al-azzawi, W., Salih, S., Hamood, A. alkhaliq, Al-Azzawi, R., Kzar, M., Jawoosh, H., … & Takriff, M. (2022). Adsorption and theoretical investigations of a schiff base for corrosion inhibition of mild steel in an acidic environment. International journal of corrosion and scale inhibition, 11, 1063–1082. https://doi.org/10.17675/2305-6894-2022-11-3-10

  33. [33] Alobaidy, A. H., Kadhum, A., Al-Baghdadi, S. B., Al-Amiery, A. A., Kadhum, A. A. H., Yousif, E., & Mohamad, A. B. (2015). Eco-Friendly corrosion inhibitor: Experimental studies on the corrosion inhibition performance of creatinine for mild steel in hcl complemented with Quantum Chemical calculations. International journal of electrochemical science, 10(5), 3961–3972. https://doi.org/10.1016/S1452-3981(23)06594-X

  34. [34] Alamiery, A., Mohamad, A. B., Kadhum, A. A. H., & Takriff, M. S. (2022). Comparative data on corrosion protection of mild steel in HCl using two new thiazoles. Data in brief, 40, 107838. https://doi.org/10.1016/j.dib.2022.107838

  35. [35] Mustafa, A. M., Sayyid, F. F., Betti, N., Shaker, L. M., Hanoon, M. M., Alamiery, A. A., ... & Takriff, M. S. (2022). Inhibition of mild steel corrosion in hydrochloric acid environment by 1-amino-2-mercapto-5-(4-(pyrrol-1-yl) phenyl)-1, 3, 4-triazole. South African journal of chemical engineering, 39(1), 42-51. https://doi.org/10.1016/j.sajce.2021.11.009

Published

2024-11-21

How to Cite

Wilson, E. O. ., & Amgbari, C. (2024). Evolution of Remote Corrosion Monitoring Systems: Retrospective Analysis, Current Technologies, and Future Paradigms in Corrosion Detection and Mitigation. Journal of Materials and Manufacturing Technology, 1(1), 80-90. https://doi.org/10.48314/jmmt.vi.32

Similar Articles

You may also start an advanced similarity search for this article.